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ABSTRACT
Graph-based semi-supervised learning methods, which deal
well with the situation of limited labeled data, have shown
dominant performance in practical applications. However, the
high dimensionality of hyperspectral images (HSI) makes it
hard to construct the pairwise adjacent graph. Besides, the
fine spatial features that help improve the discriminability of
the model are often overlooked. To handle the problems,
this paper proposes a novel spatial-spectral HSI classification
method via multiple random anchor graphs ensemble learn-
ing (RAGE). Firstly, the local binary pattern is adopted to
extract the more descriptive features on each selected band,
which preserves local structures and subtle changes of a re-
gion. Secondly, the adaptive neighbors assignment is intro-
duced in the construction of anchor graph, to reduce the com-
putational complexity. Finally, an ensemble model is built
by utilizing multiple anchor graphs, such that the diversity of
HSI is learned. Extensive experiments show that RAGE is
competitive against the state-of-the-art approaches.

Index Terms— Hypersectral images, semi-supervised
learning, anchor graph, spatial-spectral information, ensem-
ble learning

1. INTRODUCTION

Hyperspectral images (HSI) obtained by hyperspectral imag-
ing spectrometer provides abundant spatial structure and
spectral information of the observed objects. With very nar-
row diagnostic spectral bands, HSI can effectively reflect
subtle objects between land cover classes [1]. Therefore, HSI
has been used in the real-world applications. Among these,
the classification is considered as a fundamental task.

A plenty of conventional supervised methods, which only
learn from labels, have been developed for HSI classifica-
tion [2, 3]. Since the data labeling is quite costly, the models
(i.e., semi-supervised learning) that utilize labeled and unla-
beled data are rather meaningful. Due to the simple and ele-
gant formulation, the semi-supervised learning (SSL) has ob-
tained more attention [4]. Especially, graph-based SSL mod-
els belong to convex optimization problem and provide the
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closed-form solution. However, graph-based SSL usually suf-
fer from the high time complexity with computing the inverse
of graph Laplacian [5]. To address the above problem, the
anchor graph (AG)-based approaches have been developed,
which exploit a small subset of the whole points defined an-
chors to construct the large-scale adjacent graph [6]. It re-
duces the computational complexity and effectively processes
HSI data. Nevertheless, the previous AG-based works rarely
use the spatial features within pixels, which limits their dis-
criminability.

Many attempts have been made in spatial-spectral com-
bined approaches [7, 8, 9]. The intraclass spatial-spectral hy-
pergraph was constructed by considering the coordinate rela-
tionship and similarity between adjacent samples [10]. These
methods usually extract the spatial features based on the co-
ordinate distance metric between neighboring pixels, which
fail to discovery the fine feature (i.e., local texture feature).
In addition, the aforementioned models are based on a single
learner, which are weak in diversity learning. To alleviate this
situation, the ensemble learning strategy obtains more atten-
tion [11]. However, the AG-based ensemble learning method
is rarely considered in HSI classification task.

To overcome the aforesaid shortcomings, this paper pro-
poses a novel multiple Random Anchor Graphs Ensemble
learning method (RAGE) for HSI classification. The main
contributions can be summarized as follows.

• To capture the fine feature, we adopt the Local Binary
Pattern (LBP) method to extract the texture information as the
spatial feature, which can refine the local structures of HSI.

• To effectively handle the high-dimensional and large-
scale problem, we propose an anchor graph-based SSL
model, which learns the adjacent graph by assigning neigh-
bors adaptively.

• To obtain the optimal predictive model, we introduce
the ensemble learning strategy in the proposed scheme, where
multiple anchor graphs are constructed in parallel to ensure
the runtime efficiency.
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Fig. 1. The overview architecture of the proposed RAGE.

2. METHODOLOGY
2.1. Graph-based Semi-supervised Learning Framework

Graph-based SSL methods utilize the undirected graph to
learn the intrinsic geometric structures of HSI data and en-
code pairwise relations between pixels.

Suppose that each pixel of HSI can be denoted as xi ∈ Rd

(i = 1, 2, ..., n), where d is the number of spectral bands and
n refers to the number of HSI pixels. The HSI data is denoted
as X = [x1, x2, ..., xn]T ∈ Rn×d. Let X = Xl ∪ Xv(n =
l+ v), where Xl = {x1, x2, ..., xl} is the labeled set with the
labels Y(xi) ∈ {1, 2, ..., c} and Xv = {xl, xl+1, ..., xl+v} is
the unlabeled set. The sij represents the similarity between xi
and xj , S ∈ Rn×n. According to the manifold assumption,
the adjacent points xi and xj are likely to be divided into the
same category if the weight sij is large.

For the multi-class classification task, the graph-based
SSL methods can be considered as the quadratic optimization
problem:

min
F

Tr((F−Y)TC(F−Y)) + Tr(FTLF), (1)

where F ∈ Rn×c is the predicted labels matrix. Y =
[y1, ..., yl, 0, ..., 0]T ∈ Rn×c denotes the labels matrix.
C ∈ Rn×n is a diagonal matrix whose i-th element is repre-
sented as ci = αl (1 ≤ i ≤ l) and ci = αv (l + 1 < i ≤ n),
where αl and αv are two parameters. L is the Laplacian
matrix, where L = D− S and D is the degree matrix.

2.2. Spatial and Spectral Feature Extraction

The adjacent pixels in a local homogeneous area have the spa-
tial distribution consistency of land objects. To refine the spa-
tial information, the LBP model is applied in each band for
extracting texture features. The overview architecture of the
proposed RAGE is shown in Fig. 1.

Suppose that the neighborhood space Ω(xi) are expressed
as {xi1, xi2, ..., xi(w2−1)}, where w2 − 1 is the number of
neighbors of center xi. The local spatial feature of xi by LBP

extractor can be defined as:

LBPw2−1,r(xi) =

w2−1∑
h=1

L(xih − xi)2h, xih ∈ Ω(xi), (2)

where r is the radius of a circle centered at xi. L(xih−xi) =
1 if xih > xi, otherwiseL(xih−xi) = 0. As shown in Eq.(2),
each neighbor is assigned as a binary label after LBP. It is a
non-parametric and simple to calculate. The output is a bi-
nary code, which reflects the texture orientation and smooth-
ness within a certain window w. Based on the LBP code, the
corresponding histogram is obtained over the local patch cen-
tered at xi. Then all spectral bands of LBP histograms are
concatenated to build the spatial feature. LBP is insensitive
to the monotonic illumination changes, which is suitable for
single band processing in HSI.

In spectral feature extraction, we use linear prediction er-
ror (LPE) to select spectral bands with distinctive features,
which is similar to principal component analysis based on
band similarity. Finally, we obtain the spatial-spectral fea-
tures by stacking the above LBP feature and spectral feature
into one-dimensional vector.

2.3. Anchor-based Adjacent Graph Construction

After obtaining the spatial-spectral features, we randomly
choose kss features to build an anchor graph in this section.
To reduce the computational complexity, anchor-based strat-
egy is adopted to learn the adjacent graph. Ideally, each
sample can be represented by the linear combination of the
anchors. Furthermore, the data labels are also the specific rep-
resentations of the samples. Therefore, the label prediction
function is denoted as

f(xi) =

m∑
i=1

Pijf(uj), (3)

where m is the number of anchors (m � n). U =
[u1, u2, ...um]T ∈ Rm×d denotes the anchor set. P ∈ Rn×m

is the adjacent graph, where pij denotes the similarity be-
tween xi and uj . Assume that F = [f(x1), f(x2), ..., f(xn)]T



∈ Rn×c and Fu = [f(u1), f(u2), ..., f(um)]T ∈ Rm×c, the
Eq. (3) can be rewritten as F = PFu. Therefore, the design
of P is a key problem, which mainly consists of two steps:

Anchors Generation: The anchors are usually generated
by k-means or random sampling. To yield more representa-
tive anchors, we employ k-means method.

Adjacent Graph Learning: The matrix P is constructed
by k-nearest neighbors method. Inspired by [4, 12], we adopt
an adaptive neighbors assignment strategy. The nearest an-
chors assignment of xi is seen as the objective function:

min
pT
i 1=1,0≤pij≤1

m∑
j=1

‖xi − uj‖22pij + γ‖pij‖22, (4)

where pTi is the i-th row of P. In Eq.(4), the first part is the
smoothness term, which ensures the nearby pixels belong to
similar semantic labels. The second is the regularization term,
which is to prevent the trivial solution of Eq.(4), where γ > 0
is a regularization parameter. Let us define eij = ‖xi− uj‖22,
then the objective function (4) is converted into

min
pT
i 1=1,0≤pij≤1

1

2

∥∥∥pi +
1

2γ
ei

∥∥∥2
2
. (5)

According to the convex optimization of the Lagrangian
function, we have γ = k

2 ei,k+1 − 1
2

∑k
j=1 eij , where k is

the number of nonzero values. By this way, we achieve the
optimal solution p∗ij as follows:

p∗ij =
ei,k+1 − eij

kei,k+1 −
∑k

j′=1 eij′
. (6)

After getting the adjacent graph P, the normalized ad-
jacent graph S can be computed as S = PΛ−1PT , where
Λ is a diagonal matrix whose j-th element is represented as
Λjj =

∑n
i=1 pij , and Λ ∈ Rm×m. Intuitively, the element

sij of matrix S is expressed as sij = pTi Λ−1pj that satisfies
sij = sji. Moreover, it is easy to prove that matrix S is pos-
itive semidefinite and doubly stochastic. The above property
of S is crucial for optimizing AG-based SSL model, and the
details will be given later.

2.4. AG-based SSL Model

The graph-based SSL objective function has described in Eq.
(1). As mentioned above, the prediction function of labels
is represented as F = PFu. To infer the labels of unlabeled
samples in HSI classification, the AG-based SSL model based
on section 2.3 can be considered as the following problem:

L(Fu) = Tr
(
(Fl −Yl)

T (Fl −Yl)
)

+ αTr(FTLF), (7)

where Fl = PlFu, the Fl and Pl are the sub-matrix of F and
P, respectively. Yl is the labels of labeled samples, ‖ · ‖F

is the Frobenius norm. The α is the regularization parameter.
The Eq. (7) can be represented as

L(Fu) = ‖PlFu −Yl‖2F + αTr((PFu)TL(PFu))

= ‖PlFu −Yl‖2F + αTr(Fu
TLAFu),

(8)

where LA = PTLP, and L = D − S. According to the
aforementioned property of S, we have

dii =

n∑
j=1

sij =

n∑
j=1

pTi Λ−1pj = pTi

n∑
j=1

Λ−1pj = pTi 1 = 1.

(9)
Therefore, according to L = D− S = I− S = I−PΛ−1PT,
we can obtain

LA = PT (I−PΛ−1PT)P = PTP− (PTP)Λ−1(PTP).
(10)

The optimization problem (8) can be solved by setting the first
derivative as zero, and the final solution is

F∗u = (PT
l Pl + αLA)−1PT

l Yl. (11)

After obtaining the F∗u, the predicted label of unlabeled
pixel xi can be determined by

yi = arg max
j∈{1,...,c}

Pi.F
∗
uj
. (12)

Actually, we will build kg graphs by repeating section 2.3.
Based on ensemble learning strategy, the labels of unlabeled
samples are determined by the voting results of kg graphs ac-
quired from section 2.4.

3. EXPERIMENTS
3.1. Datasets and Experimental Setup

To demonstrate the effectiveness of the proposed RAGE
method, the experiments are conducted on public Indian
Pines and Pavia University datasets. Indian Pines dataset
contains 16 land cover types, which leaves 200 bands to be
used for experiments after removing noise and water ab-
sorption bands. Pavia University includes 9 classes and 103
bands for classification task. The proposed RAGE is com-
pared with R-VCANet [3], LSLRR [2], SS-RMG [13] and
SSHGDA [10]. The parameters of RAGE are {α = αl =
0.01, αv = 10−6, w = 7, kss = 96, kg = 4}. We randomly
choose 5% and 1% of Indian Pines and Pavia University
datasets for training, respectively. Three quantitative metrics
are used to evaluate performance, including overall accuracy
(OA), average accuracy (AA) and Kappa coefficient.

3.2. Experimental Results and Analyses

The visual and quantitative results of the methods are given
in Fig. 2, Table 1 and Table 2. It can be revealed that RAGE
obtains better classification results and the higher accuracy
than competitors from the perspective of OA, AA and Kappa.
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Fig. 2. The classification maps of different methods.
By adopting LBP feature extractor, the distinctive spatial fea-
tures are obtained as shown in Fig. 3, which discovery the fine
differences from different bands and enrich the local structure
information. This enhance the discriminability of learners and
effectively improve the classification performance of the pro-
posed RAGE. Moreover, we randomly choose several subsets
of features to build different anchor graphs in parallel, then
obtaining the best prediction from multiple learners by vot-
ing. By this way, the classification accuracy and efficiency of
the RAGE are further improved with small training samples.
From Table 1 and Table 2, RAGE consumes the least running
time on two datasets, and its accuracy is still maintained at a
good level comparing with other algorithms.
Table 1. Quantitative metrics of different methods on Indian
Pines dataset. The optimal value is highlighted in bold.

Methods OA(%) AA(%) Kappa Time(s)
R-VCANet 88.09 90.97 0.8639 1378.5

LSLRR 90.97 92.65 0.8966 336.2
SS-RMG 96.89 97.73 0.9646 63.9
SSHGDA 97.78 96.22 0.9747 1029.7

RAGE 98.75 96.90 0.9857 14.2

Table 2. The results of methods on Pavia University dataset.
Methods OA(%) AA(%) Kappa Time(s)

R-VCANet 85.78 82.31 0.8002 2789.7
LSLRR 91.27 86.89 0.8809 1257.3

SS-RMG 92.71 87.73 0.9009 380.9
SSHGDA 93.53 89.29 0.9123 13938.1

RAGE 99.26 98.98 0.9902 179.5

4. CONCLUSION
In this paper, we propose an efficient spatial-spectral HSI
classification method based on multiple random anchor
graphs ensemble learning. By adopting LBP model, the fine
spatial features are obtained, such that the discriminability
is enhanced. The multi-graphs with random spatial-spectral
features are built in parallel, which further improves the effi-
ciency of the proposed model and learns the diversity of HSI
data. The adaptive neighbors assignment in AG construction
decreases the computational complexity. Extensive experi-
ments on two public HSI datasets verify the effectiveness and
advantages of the proposed RAGE.
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